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Four methods are proposed that allow construction of the unobserved part of the square
dynamic flexibility matrix G(v)$Cc,c without performing a modal identification and based
on the information contained in the known rectangular sub-matrix G1(v)$Cc,p, pQ c. The
formulations exploit the symmetry of the dynamic flexibility matrix and use specific
decompositions. The proposed methods are illustrated by numerically simulated examples
with different levels of damping.
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1. INTRODUCTION

In structural dynamics, continuous systems are often discretized and represented by models
containing a finite number of degrees of freedom [1, 2]. One way to characterize a system
in a given frequency domain by using an experimental approach is to measure its dynamic
flexibility matrix at the degrees of freedom (dof) corresponding to the c sensors which have
been optimally placed on the structure [3]. In order to measure completely this dynamic
flexibility matrix it is necessary to excite the system with c linearly independent excitation
forces. However, in practice there are often fewer than c independent excitations (for
example, p excitations, pQ c).

The proposed method allows the square dynamic flexibility matrix of order c to be
constructed by using the information obtained from the measured rectangular sub-matrix
of dimension (c, p). The originality of the proposed method lies in the fact that this
dynamic flexibility matrix is constructed without exploiting the identified eigensolutions
of the system. A similar principle has already been proposed [4] and the idea is completed
and extended in the present article.

The method is based on the symmetry of the dynamic flexibility matrix and uses specific
decompositions (Takagi factorization [5], and singular value decomposition [6]) of the
square sub-matrix of order p of the above mentioned rectangular matrix.

To improve the robustness of the proposed method, an additional method is developed
which expands the unobserved frequency data via two different techniques, one for the case

0022–460X/97/260073+12 $25.00/0/sv970921 7 1997 Academic Press Limited



.   .74

when the frequency is close to resonance and the second for all other cases. Finally, the
results obtained from numerically simulated examples are presented and the limits of the
proposed methods are analyzed.

2. PROBLEM DEFINITION

2.1.      

In linear elastodynamics, the transfer functions can be used in several formulations to
predict the behaviour of mechanical structures through dynamic sub-structuring or
reanalysis of modified structures [7].

Consider, for example, the expression for the dynamic flexibility matrix G
 nn (v) of a
modified structure,

G
 nn (v)= [Z
 nn (v)]−1 = [Znn (v)+DZnn (v)]−1, (2.1)

where G
 nn (v)$Cn,n, symmetric, is the dynamic flexibility matrix of the modified structure
at the frequency v, n is the total number of dof of the structure, Gnn (v)= [Znn (v)]−1$Cn,n,
symmetric, is the dynamic flexibility matrix of the initial structure, and DZnn (v)$Cn,n,
symmetric, is the dynamic stiffness matrix of the modifications. (A list of principal notation
is given in the Appendix.) In the case of ‘‘small’’ modifications, >DZnn (v)>�Znn (v)> and
thus G
 nn (v) can be written as

G
 nn (v)=Gnn (v)−Gnn (v)[DZnn (v)Gnn (v)]

+Gnn (v)[DZnn (v)Gnn (v)][DZnn (v)Gnn (v)]+ · · · . (2.2)

In practice, only a limited number c (c�n) of pickups is available. Let G(v)$Cc,c be the
dynamic flexibility matrix at these c pickup dofs.

If it is assumed that the dofs which are involved in the modification are included among
these c pickup dofs, then equation (2.2) becomes:

G
 (v)=G(v)−G(v)[DZ(v)G(v)]+G(v)[DZ(v)G(v)][DZ(v)G(v)]+ · · · , (2.3)

where all the matrices are symmetric; G
 (v)$Cc,c is the dynamic flexibility matrix of the
modified structure relative to the c measured dofs. G(v)$Cc,c is the dynamic flexibility of
the initial structure and DZ(v)$Cc,c is the dynamic stiffness matrix characterizing the
introduced modifications. The error in equation (2.3) is of the order of [DZ(v)G(v)]3 for
an expansion limited to three terms. From a general point of view, an arbitrary precision
for G(v) can be obtained by using a sufficient number of terms in the expansion, upon
assuming that >DZ(v)>�>Z(v)> for all considered v.

The global objective is to characterize the initial structure based on experimental
observations. The elements of the matrix G(v) can be evaluated either from the identified
eigensolutions or by the direct measurement of its c(c+1)/2 elements.

2.2.      

Consider a n dof structure whose behaviour is represented on the basis of its 2n complex
modes. Its dynamic flexibility matrix G(v)$Cn,n is

Gnn (v)=Y(jvI−S)−1YT +Y�(jvI−S�)−1Y�T, (2.4)

where Y$Cn,n, S=Diag [sn ]$Cn,n, Imag (sn )q 0, [n represent respectively the modal and
spectral matrices of the structure and Y�, S� are respectively the conjugate matrices of Y
and S.
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One can introduce the submatrix partition

Y=[Y1
··· Y2]; S=

S1

S2

,

where Y1$Cn,m, S1$Cm,m contain respectively the m eigenvectors and eigenvalues in the
observed frequency band.

In this frequency band, equation (1.4) can be written as

Gnn (v)=Y1[jvIm −S1]−1YT
1 +Y�1[jvIm −S�1]−1Y� T

1 +Gnnr (v), (2.5)

where Gnnr (v) represents the contribution of the eigenmodes outside the observed band.
In the following, the sub-matrix G(v)$Cc,c (mE c�n) of Gnn (v) relative to the c pickup
dofs will be considered. The matrix G(v) is defined by:

G(v)=Y1c [jvIm −S1]−1YT
1c +Y�1c [jvIm −S�1]−1Y� T

1c +Gr (v), (2.6)

where Y1c$Cc,m is the modal sub-matrix of Y1 at the c observed dofs and Gr (v) is the
contribution of the eigenmodes outside the observed frequency band at the c observed dofs.

The construction of Gcc (v) requires the identification of Y1c , S1 and Gr (v). In order to
identify Y1c and S1 it is sufficient to determine p columns (1E pE c) of G(v) by applying
linearly independent excitations in the observed frequency band. In practice, the number
p is much smaller than the number c of observed dofs. Equation (2.5) thus allows the
matrix G(v) to be reconstructed from a small number of observed columns p among the
c columns. Many modal identification methods have been developed for this purpose (see,
for example, references [8, 9]). In order to avoid a costly modal identification of the three
matrices Y1c, S1 and Gr (v), an alternative method [10] is proposed here which is based on
the direct exploitation of a sub-matrix of G(v).

2.3.       

In this case, the contributions of all the structural modes are taken into account. The
complete knowledge of G(v) requires in principle c pickups and c excitations. For
economical reasons, only a limited number p (pQ c) of linearly independent excitation
configurations is usually available.

The problem can be formulated as follows. If p columns of G(v) are known, denoted
by the sub-matrix G1(v)$Cc,p, can the c–p remaining columns be determined without
performing a modal identification?

In order to solve this problem, several methods are proposed which are based on specific
decompositions of the dynamic flexibility matrix G(v).

2.4. 

The dynamic flexibility matrix G(v)$Cc,c is partitioned into submatrices as

G(v)= G1(v) G2(v) =
G11(v)

G21(v)

G12(v)

G22(v)
, (2.7)

where G1(v)$Cc,p is observed, G11(v)$Cp,p is a square submatrix of G1(v), and G2(v)$Cc,c− p.
It is assumed that the dynamic flexibility matrix G(v) is symmetric: G12(v)=GT

21(v),
G11(v)=GT

11(v) and G22(v)=GT
22(v). The number of unknown elements contained in the

matrix G22 is thus reduced to (c− p)(c− p+1)/2.
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3. EXPANSION METHODS FOR THE DYNAMIC FLEXIBILITY MATRIX

Given the symmetry of the complex flexibility matrix, an important part of this section
is devoted to the symmetry decomposition of a symmetric matrix.

3.1. ’   [5]
Theorem. For each symmetric complex matrix A=AT$Cm,m, there exists a unitary

matrix U$Cm,m (UHU= I) and a non-negative diagonal matrix S=Diag [sn ]$Rm,m, sn e 0,
n=1, 2, . . . , m such that

A=USUT, (3.1)

where the upper index H is the transpose complex conjugate (UH =U�T). The values sn are
singular values of the matrix A, i.e., the non-negative roots of the eigenvalues of the matrix
AAH =AA� and the columns of the matrix U are the corresponding eigenvectors of AAH.

Although the proof of Takagi’s theorem (published in reference [5]) is beyond the scope
of this article, we will derive its specific form for the matrices A with simple (non-multiple)
singular values.

3.1.1. Simple non-zero singular values of A
If all non-zero singular values of the matrix A=AT$Cm,m are simple (for the matrices

with experimentally determined elements, this situation is nearly always the case), one can
construct its symmetry decomposition with the singular values decomposition more easily
than in general case.

Assume that the singular value decomposition of A [6] is:

A=X1S1WH
1 , (3.2)

where X1 = [−xn−], W1 = [−wn−]$Cm,q, XH
1 X1 = Iq =WH

1 W1 and the diagonal matrix
S1$Rq,q contains q (qEm) non-zero singular values. If one defines the matrix U1$Cm,q as

U1 =X1D, (3.3)

where D=Diag [dn ]$Cq,q, dn $ 0, d2
n = xH

n · w̄n, n=1, 2, . . . , q, the Takagi decomposition
(3.1) of A is

A=U1S1UT
1 , where UH

1 U1 = Iq . (3.4)

In contrast to expression (3.1), only the columns of U corresponding to its non-zero
singular values in S are used in expression (3.4).

The Takagi decomposition leads to a simple definition of the Moore–Penrose
generalized inversion matrix A+ for the matrix A:

A+ =U�1S−1
1 UH

1 . (3.5)

Indeed, the four expressions AA+A=A, A+AA+ =A+, (AA+)H =AA+ and
(A+A)H =A+A hold:

U1S1UT
1 U�1S−1

1 UH
1 U1S1UT

1 =U1S1UT
1 ,

U�1S−1
1 UH

1 U1S1UT
1 U�1S−1

1 UH
1 =U�1S−1

1 UH
1 ,

(U1S1UT
1 U�1S−1

1 UH
1 )H = (U1UH

1 )H =U1UH
1 =U1S1UT

1 U�1S−1
1 UH

1

(U�1S−1
1 UH

1 U1S1UT
1 )H = (U�1UT

1 )H =U�1UT
1 =U�1S−1

1 UH
1 U1S1UT

1 .
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Proof of equation (3.4). Given equation (3.2), it follows that:

AHA=W1S2
1WH

1 (3.6)

and by symmetry of A one has

AHA=A�TA=A�AT =AAH =X1S2
1XH

1 =X�1S2
1XT

1 . (3.7)

Post-multiplying equation (3.6) by W1 (WH
1 W1 = Iq ) and equation (3.7) by X�1

(XT
1 X�1 =XH

1 X1 = Iq ) gives

AHAW1 =W1S2
1 and AHAX�1 =X�1S2

1. (3.8, 3.9)

Comparing equations (3.8) and (3.9) makes it evident that the vectors wn $Cm, x̄n $Cm,
columns of the matrices W1, X�1 respectively, are the eigenvectors of the same Hermitian
matrix AHA and S2

1 contains its non-zero and simple eigenvalues. Since the eigenvectors
corresponding to simple eigenvalues are defined in direction only, one has

W1 =X�1D�2, (3.10)

with the complex diagonal matrix D�2 =Diag [d�2
n ]$Cq,q. Left multiplication of equation

(3.10) by XT
1 gives:

XT
1 W1 =XT

1 X�1D�2 =D�2, (3.11)

where d2
n = xH

n w̄n , n=1, 2, . . . , q. If one substitutes equation (3.9) into equation (3.2) one
obtains (3.4)-type decomposition

A=X1S1D2XT
1 =X1DS1DXT

1 =U1S1UT
1 , (3.12)

where

U1 =X1D and UH
1 U1 =D�XH

1 X1D=D�D=Diag [=dn =2]= Iq . (3.13)
This last equation results from equation (3.10):

Iq =WH
1 W1 =D2XT

1 X�1D�2 = (DD�)2 =Diag [=dn =4],

because =dn =4 =1 implies =dn =2 =1.

3.1.2. Matrix A with rank (A)=1
In the special case where the numerical rank of A=AT$Cm,m is unity, the Takagi

decomposition (3.4) of A reduces to:

A= u1 · s1 · uT
1 , (3.14)

where s1 q 0 is the non-zero singular value of A and u1$Cm (uH
1 u1 =1) is the eigenvector

of the matrix AAH corresponding to its eigenvalue s2
1 .

Let an $Cm denote the columns of A=[−an−]. Then an arbitrary vector an =[−ank−]T

with non-zero component ann $ 0 defines the vector u1 as:

u1 = an · (1/>an >) · z=ann =ann, (3.15)

where

uH
1 u1 =

>an >2

>an >2X=ann =
ānn

·
=ann =
ann

=1.

Moreover, in this case the spectral norm of the matrix A=[Aik ]= [aik ] is identical to its
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Frobenius norm, and hence

s1 = >A>= >A>F =Xs
m

i=1

s
m

k=1

=aik =2 = >an >2/=ann =. (3.16)

The latter expression follows from the fact that every unit-rank symmetric matrix A, can
be written in the form:

A=
an

zann

·
aT

n

zann

=
an · aT

n

ann

, (3.17)

through comparison of equation (3.17) with equations (3.14) and (3.15).
The equality of the spectral and Frobenius norms can be demonstrated as follows:

>A>F =zTr (AHA)=X>an >2

=ann =2
Tr (ānaT

n ), >A>F =X>an >2

=ann =2
· >an >2 =

>an >
=ann =

,

where Tr is the trace of a matrix.
In the definition of u1 given by equation (3.15), the column an of A with maximal =ann =

is chosen for numerical reasons.

3.2.         G(v)

3.2.1. Expression of the sub-matrix G22(v)
According to the partitioning (2.7) of the symmetric flexibility matrix G(v)=GT(v)$Cc,c

into sub-matrices G11(v)$Cp,p, G21(v)Cc,p, G12(v)=GT
21(v)$Cp,c and G22(v)$Cc− p,c− p, one

knows from dynamic experiments the matrices G11(v), G12(v) and one is searching for
G22(v). Because in this section one works with G(v) for any fixed frequency v only, this
notation will be omitted in the following text.

Suppose that 1E rank (G)= rank (G11)= qE pQ c. The Takagi decomposition (3.4) of
G11 is:

G11 =U11 · S1 · UT
11 = (U11 · S1/2

11 )(U11 · S1/2
11 )T, (3.18)

where U11$Cp,q, (UH
11U11 = Iq =UT

11U�11) and the non-zero singular value of G11 form the
diagonal matrix S11$Rq,q. Following this symmetric decomposition of G11, a decomposition
of the sub-matrix G21 is sought in the form

G21 = (V21 · S1/2
11 ) · (U11S1/2

11 )T, (3.19)

where V21$Cc− p,q. Equation (3.19) leads to:

V21 =G21 · U�11 · S−1
11 . (3.20)

For symmetry reasons, one has

GT
21 = (U11S1/2

11 )(V21 · S1/2
11 )T = (U11S1/2

11 )(S1/2
11 VT

21)=G12. (3.21)

Equations (3.18) and (3.19) are regrouped in the form

G1 =$G11

G21%=$U11S1/2
11

V21S1/2
11 %[S1/2

11 UT
11]. (3.22)
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The first p columns of the matrix G are given by the linear combinaton of q columns of

$U11S1/2
11

V21S1/2
11 %

with the coefficient matrix S1/2
11 UT

11. From the above, one knows that for the symmetric
complex matrix G22, there exists a symmetric decomposition (3.4). Since the submatrix G12

(the first parts of the (c–p) remaining columns of G) is given in equation (3.21) by the linear
combination of q columns of U11S1/2

11 with coefficient matrix S1/2
11 VT

21, the submatrix G22 will
be given by the linear combination of [V21S1/2

11 ] with the same coefficient matrix S1/2
11 VT

21:

G22 = (V21S1/2
11 )(S1/2

11 VT
21)=V21S11VT

21. (3.23)

Introducing into expression (3.23) the matrix V21 from equation (3.20), one obtains

G22 =G21U�11S−1
11 S11S−1

11 UH
11 · GT

21 =G21U�11S−1
11 UH

11G21 =G21G
+
11 · GT

21, (3.24)

where

G+
11 =U�11S−1

11 UH
11 (3.25)

is the generalized Moore–Penrose inverse of the matrix G11, as follows from equation (3.5).
More, because G11 =G11G

+
11G11 =G11G

+
11G

T
11, G21 =G21G

+
11G11 =G21G

+
11G

T
11 and

G12 =GT
21 =G11(G+

11)TGT
21 =G11G

+
11G

T
21, one can directly write the symetric decomposition of

the complete matrix G as:

G=G1 · G+
11 · GT

1 , (3.26)

where G1$Cc,p. Note that in the case of rank (G)=1, equation (3.17) corresponds to a
particular case of equation (3.26).

3.2.2. Suppression of the small singular values
It is evident that to obtain the Moore–Penrose generalized inversion of G+

11 one can use
either equation (3.25) via Takagi’s symmetric decomposition or a classical (‘‘non-symmet-
ric’’) singular value decomposition (e.g., for the matrix A decomposed as in equation (3.2),
it is given only by A+ =W1S−1

1 XH
1 ). In both cases one must invert the diagonal matrix

G1 =Diag [sn ], n=1, 2, . . . , q of singular values of matrix G11.
In an experimental context, the inversion of small singular values (determined more by

the uncertainties in the measurements than by dynamical reasons) can cause difficulties.
For this reason, the smallest singular values sn such that:

sn E >DG11>, (3.27)

are neglected, where DG11 is an estimation of experimental errors of G11. The other
‘‘non-zero’’ singular values in number qE p define the numerical rank of the matrix G11

and can be inverted.
The above results are based on the condition rank (G)= rank (G11)= q. If this condition

is not satisfied, one must either choose other positions for the excitations or increase the
number of excitations p.

3.3.  :        G(vn )
In the verification of the method proposed in section 3.2 by numerical simulations, it

was noticed that in the low amplitude regions (in the neighbourhoods of antiresonances)
it is relatively difficult to decide which small singular values one can consider as zero. These
uncertainties increase the expansion errors. The expansion at resonance frequencies is
much better. This leads to the idea of expressing the dynamic flexibility at a given frequency
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Figure 1. Clamped plate.

v in the observed band, by a linear combination of the dynamic flexibilities at the
resonance frequencies.

The proposed procedure has three steps.

(a) Search for resonance frequencies vn , n=1, 2, . . . , r (e.g., a local maxima of the
function >G1(v)>).

(b) Expansion of the flexibility matrices G(vn ), n=1, 2, . . . , r by the method proposed
in section 2.2.

(c) Expansion of the flexibility matrices G(v) for the entire analyzed frequency band as
linear combinations of G(vn ).

In the third step, for v$vn one first finds the complex scalars an (v)$C, n=1, 2, . . . , r
such that

G1(v)= s
r

n=1

an (v)G1(vn ). (3.28)

The scalars an (v) are determined from equation (3.28) by using a least squares technique.

Figure 2. Expansion of the element Gij of the matrix G by the first method, with an =0·001. · – ·–, Calculated;
——, exact.
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Figure 3. Expansion of the element Gij of the matrix G by the second method, with an =0·01. · – ·–, Calculated;
——, exact.

The equation (3.28) can be rewritten in matrix form as

Ga= g, (3.29)

where G$Cc,p,r; g$Cc,p, a=[−an (v)−]T$Cr. Assuming that c, pq r and rank (G)= r, one
has

a=G+ · g, (3.30)

where G+ =(GHG)−1GH.
The expanded dynamic flexibility matrix G(v) at frequency v is then given by the same

linear combination of G(vn ) as in equation (3.28):

G(v)= s
r

n=1

an (v)G(vn ). (3.31)

Figure 4. Expansion of the element Gij of the matrix G by the first method, with an =0·1. · – ·–, Calculated;
——, exact.
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Figure 5. Expansion of the element Gij of the matrix G by the second method, with an =0·1. · – ·–, Calculated;
——, exact.

4. NUMERICAL SIMULATION

The preceding methods will be illustrated by a test case consisting of a clamped plate
(see Figure 1) in which the plate has the following physical and geometrical characteristics:
E=2·1×1011 N/m2, r=7800 kg/m3, n=0·291.

This structure is modelled by using the finite element code ANSYS. This model contains
236 nodes with six dofs per node. A proportional damping (B M−1K=KM−1 B) is
introduced and the dynamic flexibility matrix G(v) is constructed at each frequency in the
analyzed band by using the eigenmodes of the dissipative structure. The frequency band
under consideration [0, 100 Hz] contains the first 21 eigenmodes of the structure. A total
of c=50 pickups are arbitrarily chosen along with p=8 arbitrarily selected excitation
points. The remaining 42 columns of the matrix G(v) are determined on the basis of the
8 measured columns, yielding a total of 903 unknown elements if symmetry is taken into
account. The evolution of the amplitude and the phase of one unknown element Gij is
plotted as a function of v and compared with the exact values.

The results obtained with the first and second methods will be compared. For Figures 2
and 3, the first and second formulations, respectively, were used to expand the element
Gij with a modal damping factor an = =Re (sn ) =/Im (sn )=0·01. The expansion is nearly
perfect in the neighbourhood of the resonances but remains mediocre in the low amplitude
regions, especially near the antiresonances. A certain number of parasitic resonances also
appear in the expanded component of G(v). These peaks correspond to the resonance
frequencies of the structure and though they do not appear on all the elements of the exact
flexibility matrix G(v), they can appear in the homologous expanded elements. These
parasitic peaks can be attenuated by judiciously choosing the rank of G11(v). Generally
the results obtained by the second method are better than those of the first one.

The effect of damping is illustrated in Figures 4 and 5 for the same element of G(v) as
before except that the damping coefficients are now an =0·1. The results are of lower
quality in certain regions but in general remain acceptable in the frequency band [0, 50 Hz].

Generally the quality of the expansion is a function of (a) the positions of the excitation
points, (b) the number of known columns of G (it is clear that increasing p will improve
the quality of the results) and (c) the damping in the structure.
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5. CONCLUSION

Two methods were proposed for expanding the dynamic flexibility matrix. The quality
of the expansion is seen to depend on several factors. It is intimately related to the
numerical rank of either the matrix G1(v) or of the matrix G11(v). Two major problems
can be encountered in practice.

(1) If the numerical rank of the exact matrix G(v) is superior to the numerical rank of
the matrix G1(v) and if pe numerical rank of G(v), then the quality of the expansion can
be improved by a better choice of the excitation degrees of freedom.

(2) If the numerical rank of the exact matrix G(v) is superior or equal to p, then the
number of excitation points must be increased if a good expansion is to be obtained.

Methods for this type are required in the medium frequency domain where classical
modal analysis techniques are practically unusable.

REFERENCES
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Paris: Masson.

3. G. L, A. R and S. C 1996 Optimal sensors deployment: applications
to model updating problems. Proc. of the Inernational Conference on Identification in Engineering
Systems, 27–29 March, Swansea.

4. W. G. H, P. S. B and D. L. B 1992 Proceedings of the 10th International
Modal Analysis Conference, San Diego, CA, USA, 584–590. The U-vector expansion method
for modeling structural/acoustic systems.

5. R. A. H and C. R. J 1986 Matrix Analysis. Cambridge University Press.
6. G. H. G and V. P 1973 SIAM Journal of Numerical Analysis 10, 413–432. The

differentiation of pseudo inverses and non-linear least squares problems whose variables
separate.

7. D. J. E 1989 Technical Report, Imperial College of Science & Technology, London, England.
Vibration analysis of modified or coupled structures using FRF data.

8. R. F, J. P and G. L 1982 Mécanique–Matéraiux–Electricité. 389–391,
234–241. Identification des structures mécaniques linéaires et non linéaires.
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APPENDIX: PRINCIPAL NOTATIONS

n number of degrees of freedom of the discrete structural model
G(v)$Cn,n symmetric dynamic flexibility matrix of the initial structure at the frequency

v
G
 (v)$Cn,n symmetric dynamic flexibility matrix of the modified structure at the frequency

v
Y$Cn,n, S$Cn,n the modal and diagonal spectral matrices of the structure
Y1$Cn,m, S1$Cm,m known modal sub-basis and spectral sub-basis
DZnn (v)$Cn,n symmetric dynamic stiffness matrix of the modifications
G(v)$Cc,c symmetric dynamic flexibility matrix of the initial structure relative to the c

measured degrees of freedom
G
 (v)$Cc,c symmetric dynamic flexibility matrix of the modified structure relative to the

c measured degrees of freedom
DZ(v)$Cc,c symmetric dynamic stiffness matrix characterizing the introduced modifications

at c pickup degrees of freedom
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Y1c $Cc,m identified modal sub-basis at the c pickup degrees of freedom
vn the angular eigenfrequency of the nth mode
K, M, B$Rn,n Stiffness, mass and damping matrices of the discrete model of the initial

structure. K and M are symmetric and positive definite. B is symmetric and
positive semi-definite.

A symmetric complex matrix
A� complex conjugate of A
AT transpose of A
AH transpose complex conjugate of A (AH =A�T)
>A>, >A>F spectral and Frobenius norm of A
Tr (A) trace of a matrix A
rank (A) rank (numerical rank) of a matrix A
A+ Moore–Penrose generalized inversion of A
I, Im , Iq identity matrices
U, X1, W1, U1, U11 Unitary matrices
S, S11 Diagonal matrices on non-negative singular values sn

D Diagonal matrix with non-zero elements dn


